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On the iterates of a class of summation-type linear positive operators
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Abstract

This note is focused upon positive linear operators which preserve the quadratic test function. By using contraction principle,
we study the convergence of their iterates.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Many of the linear methods of approximation are given by a sequence of linear positive operators (LPOs) designed
as follows

(Λn f )(x) =

n∑
k=0

an,k(x) f (xn,k), f ∈ C([a, b]), x ∈ [c, d], (1)

where every function an,k ∈ C([c, d]) is non-negative, a = xn,0 < xn,1 < · · · < xn,n = b forms a mesh of nodes
and a ≤ c < d ≤ b. As usual, we consider that the Banach space C(K ), K ⊂ R compact interval, is endowed
with the norm ‖ · ‖K of the uniform convergence. In accordance with Popoviciu–Bohman–Korovkin theorem, if
(‖ei −Λnei‖[c,d])n tends to zero for i ∈ {0, 1, 2}, then (Λn f )n converges uniformly to f for each f in C([a, b]). Here
ei stands for the monomial of i-degree.

King [1] constructed operators of Bernstein-type which reproduce the test functions e0 and e2. Starting from a
similar class of operators having the degree of exactness zero, our aim is to study the convergence of the iterates and
some approximation properties of our class as well.

2. The construction

As regards the operators defined by (1), we assume that the following identities

n∑
k=0

an,k(x) = 1,

n∑
k=0

an,k(x)x2
n,k = x2, x ∈ [c, d], n ∈ N, (2)

are fulfilled.
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A generalization to the m-dimensional case will be read as follows. Let Km be a compact and convex subset of the
space Rm . Volkov [2] proved that the functions: 1, pr1, . . . , prm,

∑m
j=1 pr2

j , are test functions for C(Km). Here pr j ,

j = 1, m, represent the canonical projections on Km . Let Λn : C(Km) → C(Km) be such that

Λn1 = 1 and Λn

(
m∑

j=1

pr2
j

)
=

m∑
j=1

pr2
j . (3)

3. Results

By using the contraction principle we study the convergence of the iterates of the uni-dimensional operators Λn .
We put Λm+1

n = Λn ◦ Λm
n , m ∈ N, and Λ0

n represents the identity operator of the space C([a, b]).

Theorem 3.1. Let Λn , n ∈ N, be defined by (1) and (2) such that a = c < d = b, b 6= −a and an,0(a) = an,n(b) = 1.
Set un = minx∈[a,b](an,0(x) + an,n(x)). If un > 0, then the iterates sequence (Λm

n )m≥1 verifies

lim
m→∞

(Λm
n f )(x) =

1

b2 − a2

(
f (a)b2

− f (b)a2
+ ( f (b) − f (a))x2

)
, (4)

uniformly with respect to x on [a, b].
Considering the m-dimensional case of Λn described by (3), one has

‖Λn f − f ‖Km ≤ 2ω( f ;
√

µn). (5)

Here ω( f ; ·) represents the modulus of continuity for the function f and

µn := 2‖x‖
2
− 2

m∑
i=1

xiΛn(pri ; x).

Proof. We define X A,B := { f ∈ C([a, b]) | f (a) = A, f (b) = B}, A ∈ R, B ∈ R. Every X A,B is a closed subset of
C([a, b]) and the system X A,B , (A, B) ∈ R×R, makes up a partition of this space. Since an,0(a) = 1, the first identity
of (2) implies an,k(a) = 0, k = 1, n, consequently (Λn f )(a) = f (a) = A. Analogously, (Λn f )(b) = f (b) = B.
These relations ensure that X A,B is an invariant subset of Λn for any A ∈ R and B ∈ R.

Further on, we prove that the restriction of Λn at X A,B is a contraction for any A ∈ R and B ∈ R. Indeed, if f and
g belong to X A,B then, for each a ≤ x ≤ b, we can write

|(Λn f )(x) − (Λng)(x)| =

∣∣∣∣∣n−1∑
k=1

an,k(x)( f − g)(xn,k)

∣∣∣∣∣ ≤

n−1∑
k=1

an,k(x)‖ f − g‖[a,b]

= (1 − an,0(x) − an,n(x))‖ f − g‖[a,b] ≤ (1 − un)‖ f − g‖[a,b],

and consequently, ‖Λn f − Λng‖[a,b] ≤ (1 − un)‖ f − g‖[a,b]. On the other hand, the function

p∗

A,B =
Ab2

− Ba2

b2 − a2 e0 +
B − A

b2 − a2 e2

belongs to X A,B . Since Λne0 = e0, Λne2 = e2, p∗

A,B is a fixed point of Λn . For any f ∈ C([a, b]) one has
f ∈ X f (a), f (b) and, by using the contraction principle, we get (4).

For the m-dimensional case, we can write

Λn(‖ · −x‖
2
; x) = Λn

(
m∑

i=1

(· − xi )
2
; x

)
= 2‖x‖

2
− 2

m∑
i=1

xiΛn(pri ; x),

where ‖ · ‖ stands for the Euclidean norm in Rm . Taking into account a result established by Censor [3], Eq. (5), our
relation (5) follows. �
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